\begin{tabbing} chain{-}consistent($f$;${\it chain}$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=($\forall$$e$:E(${\it Sys}$). no\_repeats(Id;${\it chain}$($e$)) \& (0 $<$ $\parallel$${\it chain}$($e$)$\parallel$) \& (loc($e$) $\in$ ${\it chain}$($e$)))\+ \\[0ex]\& ($\forall$$e$, ${\it e'}$:E(${\it Sys}$). ${\it chain}$($e$) $\subseteq$ ${\it chain}$(${\it e'}$) $\vee$ ${\it chain}$(${\it e'}$) $\subseteq$ ${\it chain}$($e$)) \\[0ex]\& (\=$\forall$$e$:E(${\it Sys}$).\+ \\[0ex](\=($\uparrow$($e$ $\in_{b}$ ${\it In}$))\+ \\[0ex]$\Rightarrow$ (loc($e$) = if ${\it isupdate}$(${\it In}$($e$)) then hd((${\it chain}$($e$))) else last(${\it chain}$($e$)) fi )) \-\\[0ex]\& (\=($\neg$($\uparrow$($e$ $\in_{b}$ ${\it In}$)))\+ \\[0ex]$\Rightarrow$ ($\neg$(loc($f$($e$)) = loc($e$))) \\[0ex]$\Rightarrow$ \=(adjacent(Id;${\it chain}$($e$);loc($f$($e$));loc($e$))\+ \\[0ex]\& adjacent(Id;${\it chain}$($f$($e$));loc($f$($e$));loc($e$)))) \-\-\\[0ex]\& (\=($\neg$($\uparrow$($e$ $\in_{b}$ ${\it In}$)))\+ \\[0ex]$\Rightarrow$ (loc($f$($e$)) = loc($e$)) \\[0ex]$\Rightarrow$ ($\forall$$a$:E(${\it Sys}$). ($a$ $<$loc $e$) $\Rightarrow$ $a$ $\leq$loc $f$($e$) )) \-\\[0ex]\& (($\uparrow$($e$ $\in_{b}$ ${\it Out}$)) $\Rightarrow$ (loc($e$) = last(${\it chain}$($e$))))) \-\\[0ex]\& ($\forall$$e$, ${\it e'}$:E(${\it Sys}$). ($e$ $<$loc ${\it e'}$) $\Rightarrow$ ${\it chain}$(${\it e'}$) $\subseteq$ ${\it chain}$($e$)) \- \end{tabbing}